
Dynamical Systems

Exam 23 January 2023
.-:. / univ':rsityof

gron1ngen

The exam consists of 4 questions. You have 120 minutes to do the exam. You can
achieve 50 points in total which includes a bonus of 5 points.

1. [34343=9 Points]
Each of the following time-continuous one-dimensional systems depends on a parameter
a E JR. Describe the bifurcations involved, sketch the corresponding bifurcation diagrams
including representative one-dimensional phase portraits, and classify the bifurcations.

(a) a' =a?4 ax
(b) a' = aa- a
(c) a'= - a- a

2. [8 Points]
Consider the planar systems

with parameters a, be R. Sketch the regions in the a - b plane where this system has
different types of canonical forms. In each region give the canonical form and sketch the
phase portrait of the system in canonical form.

3. [112444412=13 Points]
Consider the planar system

Ia = y,
/'=-vy - 4a + 4a,

where v 0 is a parameter.

(a) Show that the system has the three equilibrium points (a_,y-)= (-1,0), (ao, yo) =
(0,0) and (a4,4)=(1,0).

(b) Show from the linearization at (ao, yo) = (0, 0) that this equilibrium is a saddle.
(c) Show that for v = 0, the system is Hamiltonian with Hamilton function

1
H(a,y) =5j +a'- 2a?+1

and sketch the phase portrait in the z - y plane.
(d) Show that for v 2:: 0 and each 0 < h < 1, H is a Lyapunov function in the region

D = {(z,) e RR?[H(@,) < h,a < 0} and use the Lasalle Invariance Principle to
show that for v > 0, the equilibrium at (a_,y.)= (-1,0) is asymptotically stable
with D, belonging to the basin of attraction.



(e) Sketch the phase portrait for v > 0 by paying attention to the stable and unstable
curves of the saddle at (ao, yo) = (0, 0). What can you say about the basin of attraction
of (z-,y-)=(-1,0).

4. [9-46=15 Points]

(a) Show by direct proof (i.e. without using a conjugacy) that the discrete-time system
an+1 = t(a,), n Zo, defined by the tent map

t:[0,1] +[0,1], {
2x

a+ 2- 2z +<}
if a> 4

satisfies all three conditions of Devaney's definition of chaos.
(b) Let I c Rand J C Rbe compact intervals and suppose the two discrete-time systems

@n41 = f(a,) and y41 = g(y) defined by maps f : I I and g:J» J are
topologically conjugate. Show that if the discrete-time system z,41 = f(a), n € Za,
is topologically transitive, then the discrete-time system y41 = g(4), n € Z_,, is
also topologically transitive. • -
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