Dynamical Systems

Exam 23 January 2023

The exam consists of 4 questions. You have 120 minutes to do the exam. You can achieve 50 points in total which includes a bonus of 5 points.

1. [3+3+3=9 Points]

Each of the following time-continuous one-dimensional systems depends on a parameter $a \in \mathbb{R}$. Describe the bifurcations involved, sketch the corresponding bifurcation diagrams including representative one-dimensional phase portraits, and classify the bifurcations.

(a) $x' = x^2 + ax$

(b)
$$x' = ax - x^3$$

(c) $x' = x^3 - x - a$

2. [8 Points]

Consider the planar systems

$$X' = \left(\begin{array}{cc} a & 1 \\ b & a \end{array}\right) X$$

with parameters $a, b \in \mathbb{R}$. Sketch the regions in the a - b plane where this system has different types of canonical forms. In each region give the canonical form and sketch the phase portrait of the system in canonical form.

3. [1+2+4+4+2=13 Points]

Consider the planar system

$$\begin{aligned} x' &= y, \\ y' &= -\nu y - 4x^3 + 4x, \end{aligned}$$

where $\nu \geq 0$ is a parameter.

- (a) Show that the system has the three equilibrium points $(x_-, y_-) = (-1, 0), (x_0, y_0) = (0, 0)$ and $(x_+, y_+) = (1, 0)$.
- (b) Show from the linearization at $(x_0, y_0) = (0, 0)$ that this equilibrium is a saddle.
- (c) Show that for $\nu = 0$, the system is Hamiltonian with Hamilton function

$$H(x,y) = \frac{1}{2}y^2 + x^4 - 2x^2 + 1$$

and sketch the phase portrait in the x - y plane.

(d) Show that for $\nu \ge 0$ and each 0 < h < 1, H is a Lyapunov function in the region $D_h = \{(x, y) \in \mathbb{R}^2 | H(x, y) \le h, x < 0\}$ and use the Lasalle Invariance Principle to show that for $\nu > 0$, the equilibrium at $(x_-, y_-) = (-1, 0)$ is asymptotically stable with D_h belonging to the basin of attraction.

(e) Sketch the phase portrait for $\nu > 0$ by paying attention to the stable and unstable curves of the saddle at $(x_0, y_0) = (0, 0)$. What can you say about the basin of attraction of $(x_-, y_-) = (-1, 0)$.

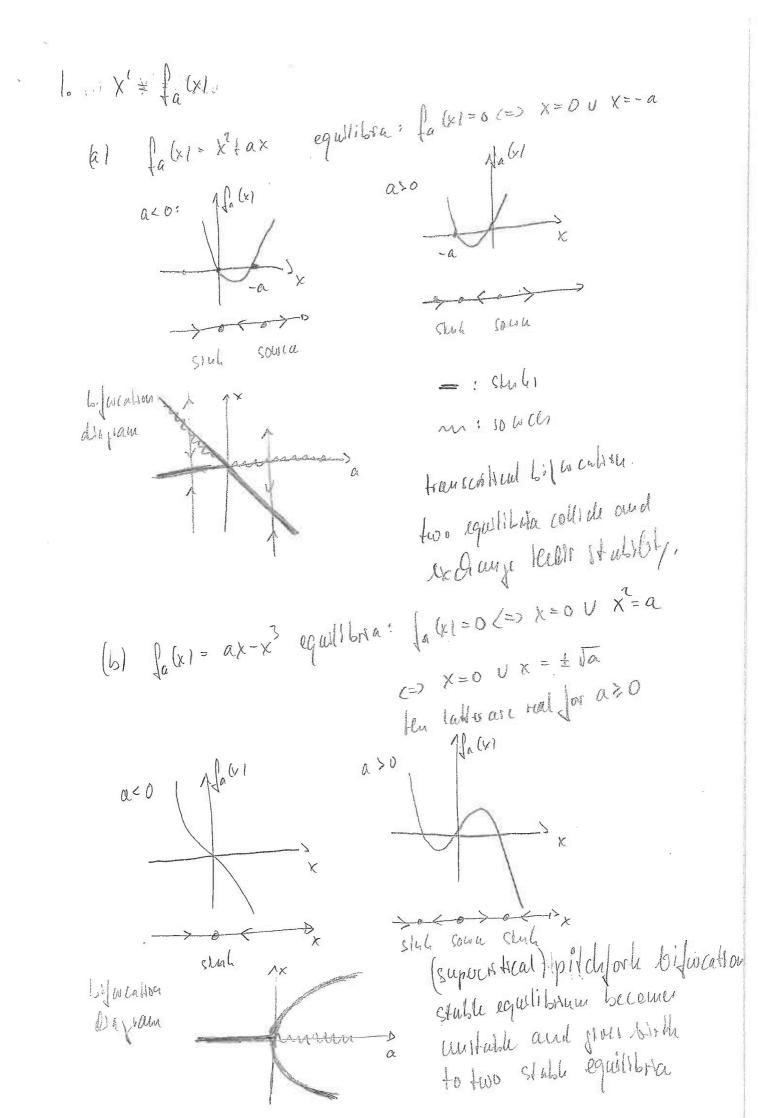
4. [9+6=15 Points]

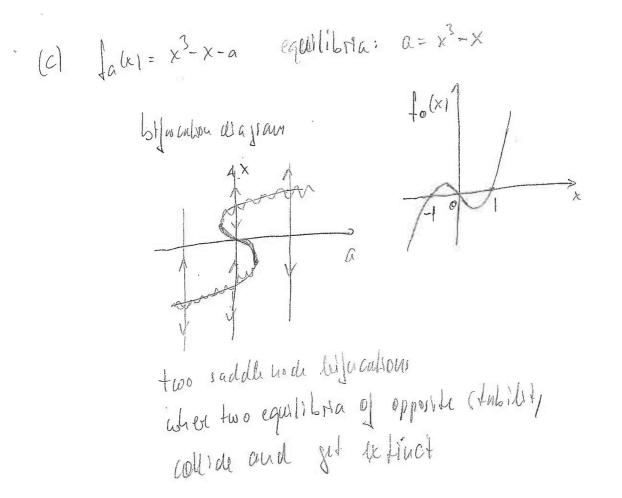
(a) Show by direct proof (i.e. without using a conjugacy) that the discrete-time system $x_{n+1} = t(x_n), n \in \mathbb{Z}_{\geq 0}$, defined by the tent map

$$t: [0,1] \to [0,1], \quad x \mapsto \begin{cases} 2x & \text{if } x \leq \frac{1}{2} \\ 2-2x & \text{if } x > \frac{1}{2} \end{cases}$$

satisfies all three conditions of Devaney's definition of chaos.

(b) Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ be compact intervals and suppose the two discrete-time systems $x_{n+1} = f(x_n)$ and $y_{n+1} = g(y_n)$ defined by maps $f : I \to I$ and $g : J \to J$ are topologically conjugate. Show that if the discrete-time system $x_{n+1} = f(x_n), n \in \mathbb{Z}_{\geq 0}$, is topologically transitive, then the discrete-time system $y_{n+1} = g(y_n), n \in \mathbb{Z}_{\geq 0}$, is also topologically transitive.





2. Let
$$A = \begin{pmatrix} a & i \\ b & a \end{pmatrix}$$

dissubstitute polynomials: $p(\lambda) = (\alpha - \lambda)^{2} = b$
 $g_{\lambda \mu}$ workers: $(\alpha - \lambda)^{2} = b$
 $g_{\lambda \mu} = \alpha \pm \sqrt{b}$
 $g_{\lambda \mu}$

3. (d) aquilitries:
$$\chi' = 0 \neq = 5 \neq = 0$$

Thus: $\gamma' = -4\chi^{3} + 4\chi$ with vanishes
 $\gamma' = \int dx \cdot \chi = 0 \text{ or } \chi = \pm 1$
Thus sepulitre $(\chi = , \chi) = (-1, 0)$
 $(\chi = , \chi) = (0, 0)$
(b) Uncarticles at (χ_{0}, χ) give basis
 $\begin{pmatrix} 0 & 1 \\ (4 & -y) \end{pmatrix}$ which has it gives able
 $-\chi(-y - \lambda) - 4 = 0$
 $c \Rightarrow \lambda_{\pm} = -\frac{y}{2} \pm \sqrt{44 + \binom{y}{2}}^{T}$
if always holds that $\lambda_{-} < 0 < \lambda_{\pm}$
 $\chi' = \frac{24}{9\chi} = -\frac{4\chi^{3}}{9\chi} + 4\chi$
 $\chi' = \frac{24}{9\chi} = -\frac{4\chi^{3}}{9\chi} + 4\chi$
 $\chi' = -\frac{24}{9\chi} = -\frac{24}{9\chi} + 4\chi$
 $\chi' = -\frac{24}{9\chi} +$

(d)
$$H[(-1, s] = 0$$

 $H(0, s) = 1$
 $H = \Im_{n \times 1}^{n} + \Im_{n \times 1}^{n} = -\Im_{n \times 2}^{n} \leq 0$
 $\Rightarrow H = \Im_{n \times 1}^{n} + \Im_{n \times 1}^{n} = -\Im_{n \times 2}^{n} \leq 0$
 $\Rightarrow H = \Im_{n \times 1}^{n} + \Im_{n \times 1}^{n} = -\Im_{n \times 1}^{n} = 0$
 D_{n} is compared and particulty be solution?
 D_{n} is compared and particulty be solution?
 $H = \Im_{n \times 1}^{n} = 1$ increase along solutions our catalog H and
 $H = \Im_{n \times 1}^{n} = 1$ increase along solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constains in white solutions our catalog H is constrained.
 D_{n} constaines in white solutions our catalog H is constrained.
 D_{n} solution (x(1), y(1)) = (c_{n}, s)
 D_{n} the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} is the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} is the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} is the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} is the equilibrium solution (x(1), y(1)) = (c_{n}, s).
 D_{n} constraines T_{n} and D_{n} . If part of the basis of adheathon
 Y_{n} adheathour is by y of the moment of the proves of the pro

4: W let
$$U_i \overline{V}_c \overline{J}_o p_{un}$$
.
Show: $\exists u \in \mathbb{Z}_{>o}$ s.t. $g^u(u) \wedge \overline{V} \neq \emptyset$
Show: $\exists u \in \mathbb{Z}_{>o}$ s.t. $g^u(u) \wedge \overline{V} \neq \emptyset$
Show: $\exists u \in \mathbb{Z}_{>o}$ s.t. $g^u(u)$
Where $h: \overline{I} \rightarrow \overline{J}$ is the homeomorph. We detted
Where $h: \overline{I} \rightarrow \overline{J}$ is the homeomorph. We detted
(ongulates f and g , i.e. $h \circ f = g \circ h$
(ongulates f and g , i.e. $h \circ f = g \circ h$
(ongulates f and g , i.e. $h \circ f = g \circ h$
(ongulates f and g , i.e. $h \circ f = g \circ h$
(introp. hamid. $\Rightarrow \exists u \in \overline{J}_{>o}$ s.t. $f^u(\overline{U}) \wedge \overline{V} \neq \emptyset$,
 f is top. hamid. $\Rightarrow \exists u \in \overline{J}_{>o}$ s.t. $f^u(\overline{U}) \wedge \overline{V} \neq \emptyset$,
i.e. $\exists x \in U$ with $f^u(x) \in \overline{V}$
Set $y \coloneqq h(x)$.
 $\Rightarrow y \in h(\overline{U}) = U$ and
 $\Rightarrow y \in h(\overline{U}) = u$ and
 $g^u(y) = g^u(h(u)) = h(f^u(x)) \in h(\overline{V}) = V$