Dynamical Systems

The exam consists of 4 questions. You have 120 minutes to do the exam. You can achieve 50 points in total which includes a bonus of 5 points.

1. $[3+3+3=9$ Points $]$

Each of the following time-continuous one-dimensional systems depends on a parameter $a \in \mathbb{R}$. Describe the bifurcations involved, sketch the corresponding bifurcation diagrams including representative one-dimensional phase portraits, and classify the bifurcations.
(a) $x^{\prime}=x^{2}+a x$
(b) $x^{\prime}=a x-x^{3}$
(c) $x^{\prime}=x^{3}-x-a$

2. [8 Points]

Consider the planar systems

$$
X^{\prime}=\left(\begin{array}{ll}
a & 1 \\
b & a
\end{array}\right) X
$$

with parameters $a, b \in \mathbb{R}$. Sketch the regions in the $a-b$ plane where this system has different types of canonical forms. In each region give the canonical form and sketch the phase portrait of the system in canonical form.
3. $[1+2+4+4+2=13$ Points]

Consider the planar system

$$
\begin{aligned}
x^{\prime} & =y, \\
y^{\prime} & =-\nu y-4 x^{3}+4 x,
\end{aligned}
$$

where $\nu \geq 0$ is a parameter.
(a) Show that the system has the three equilibrium points $\left(x_{-}, y_{-}\right)=(-1,0),\left(x_{0}, y_{0}\right)=$ $(0,0)$ and $\left(x_{+}, y_{+}\right)=(1,0)$.
(b) Show from the linearization at $\left(x_{0}, y_{0}\right)=(0,0)$ that this equilibrium is a saddle.
(c) Show that for $\nu=0$, the system is Hamiltonian with Hamilton function

$$
H(x, y)=\frac{1}{2} y^{2}+x^{4}-2 x^{2}+1
$$

and sketch the phase portrait in the $x-y$ plane.
(d) Show that for $\nu \geq 0$ and each $0<h<1, H$ is a Lyapunov function in the region $D_{h}=\left\{(x, y) \in \mathbb{R}^{2} \mid H(x, y) \leq h, x<0\right\}$ and use the Lasalle Invariance Principle to show that for $\nu>0$, the equilibrium at $\left(x_{-}, y_{-}\right)=(-1,0)$ is asymptotically stable with D_{h} belonging to the basin of attraction.
(e) Sketch the phase portrait for $\nu>0$ by paying attention to the stable and unstable curves of the saddle at $\left(x_{0}, y_{0}\right)=(0,0)$. What can you say about the basin of attraction of $\left(x_{-}, y_{-}\right)=(-1,0)$.
4. $[9+6=15$ Points]
(a) Show by direct proof (i.e. without using a conjugacy) that the discrete-time system $x_{n+1}=t\left(x_{n}\right), n \in \mathbb{Z}_{\geq 0}$, defined by the tent map

$$
t:[0,1] \rightarrow[0,1], \quad x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \leq \frac{1}{2} \\
2-2 x & \text { if } x>\frac{1}{2}
\end{array}\right.
$$

satisfies all three conditions of Devaney's definition of chaos.
(b) Let $I \subset \mathbb{R}$ and $J \subset \mathbb{R}$ be compact intervals and suppose the two discrete-time systems $x_{n+1}=f\left(x_{n}\right)$ and $y_{n+1}=g\left(y_{n}\right)$ defined by maps $f: I \rightarrow I$ and $g: J \rightarrow J$ are topologically conjugate. Show that if the discrete-time system $x_{n+1}=f\left(x_{n}\right), n \in \mathbb{Z}_{\geq 0}$, is topologically transitive, then the discrete-time system $y_{n+1}=g\left(y_{n}\right), n \in \mathbb{Z}_{\geq 0}$, is also topologically transitive.

1. $x^{\prime}+f_{a}(x)$
(a) $f_{a}(x)=x^{2}+a x$ equatiora: fac $(x)=0 \Leftrightarrow x=0 \cup x=-a$

$=$: sunh
m: so wech
transernicul lo la cabrate.
two equatlimere collobe and
Mçunje lenir stublot.
(b) $f_{a}(x)=a x-x^{3}$ equullora: $f_{a}(x)=0 \Leftrightarrow x=0 \cup x^{2}=a$
$\Leftrightarrow x=0 \quad x= \pm \sqrt{a}$
Hen lants ase roll for $a \geqslant 0$

(supucritical) pitchforte biforation stuble equalibrinum becomer custable and gius bisth to two sthan equilmata
(c) $f_{a}(x)=x^{3}-x-a \quad$ equilibria: $a=x^{3}-x$
bifac calion dia jrama

two saddle hode lufa cultanas
wher two equalibria of epporite ctublity
collide and get uttuct
2. Let $A=\left(\begin{array}{ll}a & 1 \\ b & a\end{array}\right)$.
characteristic polyuromial: $p(\lambda)=(a-\lambda)^{2}-b$
eff cuvalisos: $(a-\lambda)^{2}=b$

$$
\begin{aligned}
& \text { ins: } \quad a-\lambda_{ \pm}= \pm \sqrt{b} \\
& \Leftrightarrow \quad \lambda_{ \pm}=a \pm \sqrt{b}
\end{aligned}
$$

$\therefore b 2 \theta ;$ bignoulues complex with $\operatorname{Re} \lambda_{ \pm}=a$

$$
\begin{array}{r}
a<0 \\
\quad a>0 \\
\text { normal form }\left(\begin{array}{cc}
a & \text { spinal saw ce } \\
-\sqrt{b 1} \\
-\sqrt{b 1} & a
\end{array}\right)
\end{array}
$$

$b>0$. eifuncalus rall $\lambda_{+}>0 \Leftrightarrow a>-\sqrt{b}$

$$
\lambda_{-}<0 \Leftrightarrow a<\sqrt{6}
$$

3. (a) oquilibrta: $\quad x^{\prime}=0 \Leftrightarrow y=0$

Then: $y^{\prime}=-4 x^{3}+4 x$ whod vanishas

$$
\therefore \text { for } x=0 \text { or } x= \pm 1
$$

Thare equilibita $\left(x_{-}, y_{2}\right)=(-1,0)$

$$
\begin{aligned}
& \left(x_{1}, y_{2}\right)=(1,0) \\
& \left(x_{0}, y_{0}\right)=(0,0)
\end{aligned}
$$

(b) Lineatiantion at (x_{0}, y_{0}) give matix

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & 1 \\
4 & -v
\end{array}\right) & \text { who lat Uguo dule } \\
& -\lambda(-y-\lambda)-4=0 \\
& \Leftrightarrow \lambda_{ \pm}=-\frac{2}{2} \pm \sqrt{4+\left(\frac{v}{2}\right)^{2}}
\end{aligned}
$$

it always hold that $\lambda_{-}<0<\lambda_{+}$ which gius a sadde
(c) to be showh

$$
\begin{aligned}
& x^{\prime}=\frac{\partial t}{\partial y}=y \\
& y^{\prime}=-\frac{d t}{\partial x}=-4 x^{3}+4 x
\end{aligned}
$$

which agres wath the fore whor folde for $y=0$
nots solubou curves phuserpanail: ane leal uts oft.

- (d)

$$
\begin{aligned}
& H(-1,0)=0 \\
& H(0,0)=1 \\
& H=\frac{\partial H}{\partial x} x^{\prime}+\frac{\partial H}{\partial y} y^{\prime}=-0 y^{2} \leq 0 \\
& \Rightarrow H \text { Lyapunov Jundrun ou Dh' }
\end{aligned}
$$

Dh is compart and posidnily monestisent
as Difir Endosed by a loul ind of H awd
 fowe biret hon.

$$
H \equiv 0 \Leftrightarrow Y\left(N \equiv 0 f \cdot a \cdot t_{1}\right.
$$

Then $x^{\prime}(u)=Y(t)=0 \mathrm{fa} \cdot \mathrm{t}$

$$
\Rightarrow X(t)=\text { const }|\cdot| \cdot a \cdot t
$$

Sul the buly solution $\left(x c_{1}, y(n)\right) \equiv($ const. 0$)$
is ten equilibdiaum solution $(x+1) y(x)) \equiv(1,0)$.
By Lasalle Inodrame Pruciple, (x, y) is asyunplontally stolle and D_{h} is post of the furk of athathon
(8)

The basin of attracitou is bijes than Dh.
4.(a) Cousions the gaph af t and its iteats:

t^{n} waps the 2^{n} in tovals
sanced wly to tha the teroal $[0,1]$
1). Lax $[0,1]=\bigcup_{k=1}^{!_{n}} I_{h}^{n}$ and ling y° of I_{k}^{n} equal to $\left(\frac{1}{2}\right)^{n}$

1. End intural I_{k}^{n} contalus prosidecpotut \Rightarrow putiochic protubs est dense.
2. Let $U, V=[0,1]$ apere

$$
\begin{aligned}
& \text { U,Vc[0, }] \text { apma } I_{k}^{n} c U . \\
& \Rightarrow \exists u, k \text { suhthab }
\end{aligned}
$$

reall $t^{n}\left(I_{k}^{n}\right)=[0,1]$.

$$
\Rightarrow \quad \text { rcall } t^{n}\left(-k x I_{n}^{n} c U \leqslant t \quad t^{n}(x) \in V\right.
$$

$\Rightarrow t$ transthor
3. Goore $\beta=\frac{1}{2}$. Let $x \in[0,1]$ and U le lo opus. wijhls. Of x. to at hoown: Iyfur cand ue $\mathbb{Z}_{x 0}$ sukthat

$$
\left|t^{n}(x)-t^{n}(y)\right|>\beta
$$

to teris lind note that $\exists u, k \in \mathbb{Z}_{>0}$ gt. $x \in I_{k}^{u}$ and $I_{k}^{n} \subset l$. A) $t^{n}\left(I_{k}^{u}\right)=[0,1]$, that in $y \in I_{k}^{n}$ s.t.

$$
\left|t^{n}(x)-t^{4}(y)\right|>\frac{8}{2}
$$

4: (b) Let $U, \bar{V} c]$ open.

$$
\begin{aligned}
& \text { Slow: } \exists u \in \mathbb{Z}>_{0} \text { s.t. } g^{u}(u) \wedge V \neq \phi \\
& \text { St } \tilde{u}=h^{-1}(u) \text { and } \tilde{V}=\tilde{h}^{-1}(u)
\end{aligned}
$$

Wher $h: I \rightarrow y$ is the homeomosph. Heat conguath f andg, i.e. hof=gsh \tilde{u}, \ddot{v} aregoer as he is contin.
 i.e. x 垪 with $f^{n}(x)^{\text {V }}$

Set $y=h(x)$.

$$
\begin{aligned}
& \text { Set } y=h(x): \tilde{u})=U \text { and } \\
& \Rightarrow y \in h(u)=h\left(f^{\prime}(x)\right) \in h(\tilde{v})=V \\
& \left.\qquad g^{u}(y)=g^{u}(x)\right)=h
\end{aligned}
$$

